本文是我们在分析CPU和内存开销的过程中踩过的一些坑,还有一些经验总结,希望能够对大家有所帮助。

前言

作为DevOps,我们在日常搞的项目,从开发到测试然后上线,我们基本都局限在功能的单元测试,对一些性能上的细节很多人包括我自己,往往都选择视而不见, 后果往往让工具应用产生不可预测的灾难(it’s true)。有些人说底层的东西,或者代码层面的性能调优太深入了,性能提升可以用硬件来补,但我觉得这只是自欺欺人的想法,提升硬件配置这种土豪方法不能一直长存的,更何况 现在我们的工具哪个不是分布式的,哪个不是集群上跑的,为了冗余也好,为了易于横向扩展也罢,不可能保证所有的服务器都具备高性能的,我们不能让某些低配的服务器运行我们有性能缺陷的代码产生短板,成为瓶颈。 我记得2016年参与了一些通用服务agent的开发,由于要运行于公司全网几乎所有服务器中,生产上的环境复杂程度超乎我们想象。 一个问题到达很深入的时候,就已经是共同的问题 更何况Go语言已经为开发者内置配套了很多性能调优监控的好工具和方法,这大大提升了我们profile分析的效率,除了编码技巧,不断在实战项目中磨炼自己 对性能问题分析的能力,对日后我们在项目的把控力和一些功能布局都是很有帮助。

Golang的性能调优手段

Go语言内置的CPU和Heap profiler

Go强大之处是它已经在语言层面集成了profile采样工具,并且允许我们在程序的运行时使用它们, 使用Go的profiler我们能获取以下的样本信息:

  • CPU profiles
  • Heap profiles
  • block profile、traces等 Go语言常见的profiling使用场景
  • 基准测试文件:例如使用命令go test . -bench . -cpuprofile prof.cpu 生成采样文件后,再通过命令 go tool pprof [binary] prof.cpu 来进行分析。
  • import _ net/http/pprof:如果我们的应用是一个web服务,我们可以在http服务启动的代码文件(eg: main.go)添加 import _ net/http/pprof,这样我们的服务 便能自动开启profile功能,有助于我们直接分析采样结果。
  • 通过在代码里面调用 runtime.StartCPUProfile或者runtime.WriteHeapProfile 更多调试的使用,建议可以阅读The Go Blog的 Profiling Go Programs go-torch

在没有使用go-torch之前,我们要分析一分profile文件的时候,遇到结构简单的还好,但遇到一些调用关系复杂的,我相信大部分程序员都觉得无从下手,如下图:

这样的结构,带给我们的是晦涩难懂的感觉,我们需要寻求更直观,更简单的分析工具。 go-torch是Uber公司开源的一款针对Go语言程序的火焰图生成工具,能收集 stack traces,并把它们整理成火焰图,直观地程序给开发人员。 go-torch是基于使用BrendanGregg创建的火焰图工具生成直观的图像,很方便地分析Go的各个方法所占用的CPU的时间, 火焰图是一个新的方法来可视化CPU的使用情况,本文中我会展示如何使用它辅助我们排查问题。

参考资料


茶歇驿站

一个可以让你停下来看一看,在茶歇之余给你帮助的小站,这里的内容主要是后端技术,个人管理,团队管理,以及其他个人杂想。

打赏